
ADNS-5030
High Resolution Performance Optimization

Application Note 5300

Introduction

The Avago Technologies ADNS-5030 small form factor
optical mouse sensor is designed for optimum navigation
performance in cordless mouse applications. This entry
level mouse sensor is capable of high-speed motion
detection – up to 14 ips velocity and 2 G acceleration.
Frame rate and power saving features are controlled
internally to optimize surface tracking and battery life
performance.

Unlike previous low power sensors, the ADNS-5030 is the
first compact optical mouse sensor to feature an enhanced
resolution of up to 1000 counts per inch (cpi). At this
setting, users may find it difficult to control mouse motion
at low speeds because this setting has greater movement
sensitivity. In other words, you can see your PC cursor
move dramatically even with the slightest nudge.

To overcome such movements, this application note
recommends a switching method that improves ADNS-
5030 performance, especially during low speeds at the
highest resolution setting.

The Switching Method

The switching method is a set of algorithm calculations
that changes the resolution of the optical mouse based on
its motion speed. As the sensor’s resolution is enhanced
up to 1000 cpi, most mouse manufacturers will design
their mouse to be set at the maximum. However, at low
speeds, when users try to draw something or even locate
the mouse cursor, a lower sensitivity is preferred.

It is recommended that there should be a motion threshold
to determine whether a low or high resolution should be
used. Avago Technologies recommends that the resolution
should be updated frequently as the motion evaluation
is done to improve user experience. Table 1 shows an
example of the motion threshold for this implementation.
Users will need to determine the number of pixels (as the
threshold) since this depends very much on each motion
evaluation rate[1].

Example 1 (Table 1) is with single stage switching at 2 ips.

Table 1. Motion threshold table to determine resolution set for Example 1

Speed (ips) Operation Effective Resolution (cpi)

<2.0 Write 0x00 to Address 0x0d 500

>2.0 Write 0x01 to Address 0x0d 1000

There is also another alternative way to enhance the user
experience. It involves two or more stages of resolution
change, as shown in Example 2 (Table 2):

Table 2. Motion threshold table to determine resolution set for Example 2

Speed (ips) Operation Effective Resolution (cpi)

< 1.5 Write 0x00 to Address 0x0d 500

1.5 - 2.0 Write 0x00 to Address 0x0d 500 * 3/2 = 750

> 2.0 Write 0x01 to Address 0x0d 1000

As mentioned earlier, there is an algorithm that can be
used to determine the motion threshold. This is known as
Common Resolution Estimation (C-RES).

The following discussion is based on Example 1 only.
Note 1. Motion evaluation rate refers to the frequency of checking whether the accumulated pixel
movements have exceeded the threshold or not.

2

Read Delta-x

Store sign.
Output only

absolute value

XY Accumulator <
Z1

No

Output = X_count
 = X_Distance

Accummulator = sign of X_Distance
Output = (Absolute) X_Distance

XY Accummulator =
X_Distance

Read Delta-y

Store sign.
Output only

absolute value

Output = Y_count
 = Y_Distance

Accummulator = sign of Y_Distance
Output = (Absolute) Y_Distance

XY Accummulator +=
Y_Distance

For every motion evaluation cycle

Yes
current_RES =

500 cpi500 cpi

Assume:
- The default setting is 1000 cpi
- Z1 pixels represents movement at 2 ips

Reminder:
- To un-2’s-complement a value, complement
the current value, then add 1.

current_RES =
1000 cpi

1000 cpi

Repeat 6 steps above
(optional)

Figure 1. Common Resolution Estimation (C-RES) implementation flowchart

Common Resolution Estimation (C-RES)

The Common Resolution Estimation (C-RES) takes into
consideration the total absolute values of delta-x and
delta-y since the last movement. In this implementation
algorithm, the values in delta-x and delta-y (pixels) are
summed up to estimate the current mouse speed. By using
this set of algorithms, a common resolution setting is used

for both x and y movements. It is recommended that the
motion evaluation rate is smaller than the USB polling rate.
This is to ensure a smoother resolution transition, enabling
more fluid cursor tracking. The next section describes how
Z1 is determined.

3

Guidelines to Determine Z1

To determine the Z1 value, the motion evaluation rate needs to be used. Avago Technologies recommends the evaluation
rate should be done 2-4 times more frequently than the USB polling rate. This will avoid drastic resolution changes which
may annoy mouse users. Also, the main advantage of this is to have the USB report movements with an “averaged”
resolution value, especially when the user moves the mice repeatedly below and over the speed threshold.

Here are formulas to use as a reference when implementing this technique:

pixel movement rate (counts/sec) = resolution (counts/inches) * movement speed (inches/sec)

Assuming that the speed threshold to switch to 1000 counts/inch is 2 inches/sec:

pixel movement rate = 2000 counts/sec

Here is where we need to take into consideration the motion evaluation rate:

If the motion evaluation rate = 2 ms

Pixel movement at one direction, Z0 = (2000 * 2)/1000 = 4 counts

If the motion evaluation rate = 3 ms

Pixel movement at one direction, Z0 = (2000 * 3)/1000 = 6 counts

If the motion evaluation rate = 4 ms

Pixel movement at one direction, Z0 = (2000 * 4)/1000 = 8 counts

Since the list of formulas is just a guide, it is recommended that users customize the firmware design (especially the
evaluation rate and speed threshold) according to their preference and application.

Conclusion

The suggested switching method is intended to help mouse manufacturers and designers overcome the over-sensitivity
of the mouse cursor while operating with the maximum resolution setting. However, there may be more alternatives
in terms of the speed threshold selection and number of switching stages which designers can adjust to optimize user
experience. It is recommended that a microcontroller function be used to enable or disable the algorithm easily.

4

Appendix

Figure 2. Example of implementation in ADNK-5033-TN24 –
TIMERA1_ISR in “wm430_system.c”

Figure 3. Example of implementation in ADNK-5033-TN24 –
Main routine in “wm430_system.c”

TIMERA1_ISR

switch
(TAIV= 0x02)?

Yes

WM430_SYS_eventFlagsB =1

Call
WM430_SYS_
updResolution

subroutine

break

No

TACCR1 += 2 ms

write
Mouse_Control

register with 0x01

Other tasks

write
Mouse_Control

register with 0x00

No

No

Yes

Yes

Other tasks

WM430_SYS_eventFlagsB
= 1?

main routine

WM430_SYS_stateFlags
 = 1?

5

Figure 4. Example of implementation in ADNK-5033-TN24 – WM430_SYS_updResolution subroutine in “wm430_system.c”

WM430_SYS_
updResolution

subroutine

WM430_SYS_sumXY
> 4?

WM430_SYS_sumXY =
abs(WM430_SYS_sumDX) +
abs(WM430_SYS_sumDY)

WM430_SYS_stateFlags = 0

Return

No

Yes

WM430_SYS_stateFlags = 1

6

File: “wm430_system.c”
===
__interrupt void TIMERA1_ISR(void);
// Usage: Executed whenever a Timer_A1 interrupt is generated
// Parameters: none
// Returns: nothing
===
#pragma vector=TIMERA1_VECTOR
__interrupt void TIMERA1_ISR(void)
{
 switch(TAIV)
 {
 case 0x02: // TACCR1 CCIFG
 TACCR1 += TIMERA1_SMCLK_002MSEC; // Set up next periodic interrupt for TACCR1
 WM430_SYS_eventFlags |= EVENT_TACCR1INT; // Signal the need for processing events at TACCR1 periods
 WM430_SYS_eventFlagsB |= EVENT_RESOLUTIONUPD; // Check and update resolution
 WM430_SYS_updResolution(); // Update sensor resolution
 break;
…
…
 }
}

File: “wm430_system.c”
===
Void main (void);
// Usage: main routine which executes all mouse buttons and sensor related operation
// Parameters: none
// Returns: nothing
===
void main(void)
{
…
…
 // Common Resolution Estimation(C-RES) implementation
 if(WM430_SYS_eventFlagsB & EVENT_RESOLUTIONUPD) // Check and update resolution
 {
 if(WM430_SYS_stateFlags & STATE_RES1000CPI)
 {
 SENSOR_writeRegister(ADNS5030_MOUSECTRL_ADDR, ADNS5030_RES1000CPI); // Configuration register data
(1000CPI)
 }
 else
 {
 SENSOR_writeRegister(ADNS5030_MOUSECTRL_ADDR, ADNS5030_RES500CPI); // Configuration register data
(500CPI)
 }
 WM430_SYS_eventFlagsB &= ~EVENT_RESOLUTIONUPD; // Clear update resolution flag
 }
…
…
}

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved.
AV01-0478EN - July 26, 2010

File: “wm430_system.c”
===
void WM430_SYS_updResolution(void);
// Usage: Update sensor resolution for performance optimization
// Parameters: none
// Returns: nothing
===
void WM430_SYS_updResolution(void)
{
 WM430_SYS_sumXY = abs(WM430_SYS_sumDX);
 WM430_SYS_sumXY += abs(WM430_SYS_sumDY);

 if(WM430_SYS_sumXY > ADNS5030_PIXELMOV_THRESHOLD)
 {
 WM430_SYS_stateFlags |= STATE_RES1000CPI; // 1000cpi
 }
 else
 {
 WM430_SYS_stateFlags &= ~STATE_RES1000CPI; // 500cpi
 }
}

